Normalization and microbial differential abundance strategies depend upon data characteristics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalization and microbial differential abundance strategies depend upon data characteristics

BACKGROUND Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative ab...

متن کامل

Data Normalization Strategies for MicroRNA Quantification.

BACKGROUND Different technologies, such as quantitative real-time PCR or microarrays, have been developed to measure microRNA (miRNA) expression levels. Quantification of miRNA transcripts implicates data normalization using endogenous and exogenous reference genes for data correction. However, there is no consensus about an optimal normalization strategy. The choice of a reference gene remains...

متن کامل

Package 'tcc' Title Tcc: Differential Expression Analysis for Tag Count Data with Robust Normalization Strategies

April 26, 2017 Type Package Title TCC: Differential expression analysis for tag count data with robust normalization strategies Version 1.16.0 Author Jianqiang Sun, Tomoaki Nishiyama, Kentaro Shimizu, and Koji Kadota Maintainer Jianqiang Sun , Tomoaki Nishiyama Description This package provides a series of functions for performing dif...

متن کامل

TCC: Differential expression analysis for tag count data with robust normalization strategies

The R/Bioconductor package, TCC, provides users with a robust and accurate framework to perform differential expression (DE) analysis of tag count data. We recently developed a multi-step normalization method (TbT; Kadota et al., 2012 [3]) for two-group RNA-seq data. The strategy (called DEGES) is to remove data that are potential differentially expressed genes (DEGs) before performing the data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Microbiome

سال: 2017

ISSN: 2049-2618

DOI: 10.1186/s40168-017-0237-y